Elmomc Multi-Axis Motion Controller-Maestro Motion Contro Manual de usuario

Busca en linea o descarga Manual de usuario para Hardware Elmomc Multi-Axis Motion Controller-Maestro Motion Contro. ElmoMC Multi-Axis Motion Controller-Maestro Motion Control User Manual Manual de usuario

  • Descarga
  • Añadir a mis manuales
  • Imprimir

Indice de contenidos

Pagina 1 - Motion Control

Motion Control Library Tutorial January 2007 (Ver. 1.0)

Pagina 2

Maestro Motion Library Tutorial MAN-INTUG (Ver. 1.7) 7

Pagina 3 - Contents

For this operator to work properly, the first line of the PVT table containing a text header must be removed. plot3(posX,posY,posZ) axis square; grid

Pagina 4 - 1.2 Vector properties

Figure 1-5: Projection on the XZ plane Example (Motion Mathematic Lib Samples\ Vector_3D \ Helix – www.elmomc.com)

Pagina 5 - ΔT = 0.5(vxt + vnt)

Maestro Motion Library Tutorial MAN-INTUG (Ver. 1.7) 10 Yc = Y - R*sin(Teta) // X coordinate of the helix axis v2.splines()

Pagina 6 - 1.3.3 Spline

Inside the polyline operator parenthesis vector_name.starts(trj_name) and vector_name.ends() can be added function calls – addline(), addcircle(), add

Pagina 7

3. vsc = 2 – ML builds switch arc with the switch radius vsr (this parameter must be set by the user). 4. vsc = 3 - ML builds a swit

Pagina 8 - a = 100000

Maestro Motion Library Tutorial MAN-INTUG (Ver. 1.7) 13

Pagina 9

Maestro Motion Library Tutorial MAN-INTUG (Ver. 1.7) 14 Figure 1-8: Recording of

Pagina 10 - MAN-INTUG (Ver. 1.7)

Maestro Motion Library Tutorial MAN-INTUG (Ver. 1.7) 15 Figure 1-9: Three-dimensional polygon drawn in

Pagina 11

Maestro Motion Library Tutorial MAN-INTUG (Ver. 1.7) 16 Figure 1-11: Pr

Pagina 12

Notice This tutorial is delivered subject to the following conditions and restrictions:  This tutorial contains proprietary information belongi

Pagina 13 - 1.3.4 Polyline

In fact, the value defined as r ≥ (vse) 2/(vae*vac ) (by default vae = 0.9) must be used in the calculations. 2. Implicitly pre-defined by the us

Pagina 14

Input parameters and intersection geometry define the influence of a switch arc on a trajectory. The main cases of shapes intersection are considered

Pagina 15

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-1 Chapter 2: Switch Radius Calculation 2.1 Line – line intersection If a traje

Pagina 16

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-2 vsr ≤ min(0.5ΔL1, 0.5ΔL2)*tg(γ/2)

Pagina 17 -

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-3 r_max = dmax*tg(γ/2) = 50000* tg(0.5*0.1974) = 4951 This value is limiting a

Pagina 18

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-4 vse = [r_switch*vac*vae]1/2 = [4455.9*500000*0.9]1/2 = 44778.9 Example 2.1c

Pagina 19

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-5 Line 1 is defined by its init point (300000, 900000) and end point (700000,2

Pagina 20

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-6 2.2 Circle – line intersection Note: C – circle arc, L – line, R – circle

Pagina 21

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-7 Figure 2-2 Example 2-2 (Motion Mathematic L

Pagina 22 - MAN-MLT (Ver 2.0)

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-8 Yp = Yc + K*(Xp – Xc) = 0 +0.7*(-46979 - 0) = -32885 And the perpendicular l

Pagina 23

Contents Chapter 1: General Description ...11.1 Introduct

Pagina 24

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-9 The length of the perpendicular h should also be calculated. By knowing the

Pagina 25

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-10 Figure 2-4 In our calculations was not taken in account add

Pagina 26

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-11 r = ρ1ρ2/(ρ1 + ρ2)

Pagina 27

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-12 ρ1= 100000 - |C/B| = 100000 - |(-3464101600.0)/(-90000)| = 61509.98222

Pagina 28

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-13 Figure 2-7 This condition is not always sufficient. Adequacy depends on a

Pagina 29

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-14 Figure 2-8 Example 2-9 (Motion Mathematic Lib Samples\Circle to Line\ Se

Pagina 30

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-15 Figure 2-9 Projection of the circle arc init point P1 on the line L does

Pagina 31

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-16 Figure 2-10 Example 2-11 (Motion Mat

Pagina 32

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-17 2.2.1.3 Line intersects the center of the circle Consider the last case of

Pagina 33 - r = ρ

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-18 Figure 2-13 Example 2-14 (Motion Mathematic Lib Samples\Circle to Line\ S

Pagina 34 - ) and an

Chapter 1: General Description 1.1 Introduction The Motion Library (ML) produces trajectories based on the PVT mechanism. It implements a set of fun

Pagina 35

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-19 c) The circle arc sweeps an angle less than 90o and a perpendicular droppe

Pagina 36

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-20 By (a1.6) we have Xp = (Yo – Y1 + kX1 – qXo)/(k – q) = (–80000 + 56569 – 5

Pagina 37

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-21 ρ[(Xp,Yp),(X1,Y1)] = r

Pagina 38

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-22

Pagina 39 - β = 135

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-23 that produces r = [R2 – (ρ1)2 – (ρ3)2]/(2R + 2ρ1)

Pagina 40

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-24 2.2.2.3 Circle center (Xc,Yc) Є L1 (line L1 intersects the center of the c

Pagina 41 - 2-16

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-25 1. Circle init radius intersects with the line L continued in its positive

Pagina 42

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-26 or rd = hd – hR – hr

Pagina 43

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-27 Figure 2-24 2.2.3.2 Line parallel to the circle arc init radius a) Li

Pagina 44 - 2-19

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-28 Figure 2-25b Maximum switch radius is perpendicular to the line L at the

Pagina 45

general trajectory time (vtt) switch arc definitions (vsc, vsr, vsd) admissible velocity and position errors definitions (vpe,vve) PVT step low and hi

Pagina 46

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-29 3. Know trajectory init point P2(X2,Y2), calculate ρ2 = ρ(p2, p1) = [(X2

Pagina 47 - . The length of h

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-30 By (a3.6)-(a3.7) from Appendix 3. q1 = ΔX1/ΔY1= (34641-0)/(20000-0) = 1.732

Pagina 48

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-31 2.3.1 One of two circle arcs intersects the internal area of the second If

Pagina 49 - (2.2.3.2-1)

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-32 (Xo – Xc2)2 + (Yo – Yc2)2 = (R2 – r)2

Pagina 50 - Example 2-27

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-33 (C1)2 + (C2)2 – 1 = [(X2 – X1)/d]2 + [(Y2 – Y1)/d]2 – 1 = d2/d2 – 1 = 0

Pagina 51

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-34 (rC1 + C3)2 + (rC2 + C4)2 = (R2 – r)2

Pagina 52 - Figure 2-28

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-35 (X2 + 65000)2 + (– 35000)2 = 1000002 that produces X2 = -158675. d = |X2 –

Pagina 53

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-36 From (2.3.1-27) Figure 2-31 XoR1 – X1R1 = r(Xc1 – X1)

Pagina 54

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-37 r2 C12 + (2C1C3)r + C32 + r2C22 + (2C2C4)r + C42 = r2 + (2R2)r + R22

Pagina 55

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-38 Substituting into (4.1-32) (X2 + C1r – Xc1)2 + (Y2 + C2r – Yc1)2 =

Pagina 56

1.3 Trajectory generation 1.3.1 Line Target position for a line is defined by the parameters of the function line(): Two-dimensional line V1.line(x,y)

Pagina 57

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-39 2.3.2 Each circle intersects the internal area of the second Figure 2-33 sh

Pagina 58

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-40 This system is similar to (2.3.2-2) – (2.3.2-4) and comes to the same solut

Pagina 59

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-41 C1 = (X1 – Xc2)/R2 = -0.866025 C2 = (Y1 – Yc2)/R2

Pagina 60

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-42 This system is similar to (4.2) – (4.4) and comes to the same solution r =

Pagina 61

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-43 Consider the case that the sweep angle of the first circle is β1 < 90 an

Pagina 62

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-44 r2C5 + rC6 + C7 = 0

Pagina 63

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-45 So for r, the results are: r = –C7/C6

Pagina 64

Appendix A: Projection of a point on a line defined by the end points The line L is defined by its end points P1(X1,Y1) and P2(X2,Y2). Drop a perpendi

Pagina 65

Y is from (a1.4). Coordinates (X,Y) of the intersection point line L and perpendicular are coordinates of projection point (Xp,Yp). Having got a proje

Pagina 66

Appendix B: Coefficients of the line standard equation for the line defined by the end points If the line L is defined by its end points (X1,Y1) and

Pagina 67 - Maestro Software Manual

Other popular types of splines like Bezier curves, B- splines or NURBS are usually not interpolation but smoothing splines. The spline curve does

Pagina 68 - MAN-MLT(Ver. 2.0)

Appendix C: Intersection point of two lines defined by the end points Line L1 is defined by its end points P1(X1,Y1) and P2(X2,Y2). Line L2 is defined

Pagina 69

or (X3 – X1)/∆X1 = (Y – Y1)/∆Y1 (a3.10) and f

Pagina 70

Appendix D: Circle – line intersection points The line is defined by its end points (X1,Y1) and (X2,Y2). The circle is defined by its radius R and c

Pagina 71 - MAN-MLT (Ver. 2.0)

1.3.3.1 Examples for the two-dimensional spline interpolation Example Example (Motion Mathematic Lib Samples\ Vector_2D \ Spline_Ellipse – www.elmomc.

Pagina 72

Maestro Motion Library Tutorial MAN-INTUG (Ver. 1.7) 6 for t = 0:pi/72:2*pi x = R*cos(3*t) y = R*sin(5*t) v1.splinep(x,y) // add spline po

Comentarios a estos manuales

Sin comentarios